Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 15(1)2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2166972

ABSTRACT

The rapid emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in the ongoing global coronavirus disease 2019 (COVID-19) pandemic. Thus, the rapid development of a platform to detect a broad range of SARS-CoV-2 variants is essential for successful COVID-19 management. In this study, four SARS-CoV-2 spike protein-specific single-chain variable fragments (scFvs) were isolated from a synthetic antibody library using phage display technology. Following the conversion of these scFvs into monoclonal antibodies (mAbs) (K104.1-K104.4) and production and purification of the mAbs, the antibody pair (K104.1 and K104.2) that exhibited the highest binding affinity (K104.1 and K104.2, 1.3 nM and 1.9 nM) was selected. Biochemical analyses revealed that this antibody pair specifically bound to different sites on the S2 subunit of the spike protein. Furthermore, we developed a highly sensitive sandwich immunoassay using this antibody pair that accurately and quantitatively detected the spike proteins of wild-type SARS-CoV-2 and multiple variants, including Alpha, Beta, Gamma, Delta, Kappa, and Omicron, in the picomolar range. Conclusively, the novel phage display-derived mAbs we have developed may be useful for the rapid and efficient detection of the fast-evolving SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal , Bacteriophages , SARS-CoV-2 , Single-Chain Antibodies , Humans , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus
2.
PLoS One ; 17(2): e0263684, 2022.
Article in English | MEDLINE | ID: covidwho-1674018

ABSTRACT

Since the SARS-CoV-2 infection was identified in December 2019, SARS-CoV-2 infection has rapidly spread worldwide and has become a significant pandemic disease. In addition, human death and serious health problem caused by SARS-CoV-2 infection, the socio-economic impact has been very serious. Here, we describe the development of the viral vector vaccine, which is the receptor-binding domain (RBD) of SARS-CoV-2 expressed on the surface of Newcastle disease virus (LVP-K1-RBD19). The RBD protein concentrations on the viral surface were measured by the sandwich ELISA method. 106.7 TCID50/ml of LVP-K1-RBD19 has a 0.17 µg of RBD protein. Optical density (OD) values of mouse sera inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 generated 1.78-fold higher RBD-specific antibody titers than mice inoculated with 10 µg RBD protein with alum at 28 dpi. Moreover, mice inoculated with 10 µg of RBD protein expressed on the surface of LVP-K1-RBD19 virus showed more than 80% neutralization at 1:256 against the SARS-CoV-2 pseudovirus. These results demonstrated that inactivated LVP-K1-RBD19 virus produces neutralizing antibodies against SARS-CoV-2 in a short period and could be elect protective immunity in humans and LVP-K1-RBD19 will be a good candidate for the COVID-19 vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Newcastle disease virus/immunology , Viral Vaccines/immunology , Animals , COVID-19/immunology , COVID-19/virology , Female , Humans , Mice , Mice, Inbred BALB C , Newcastle disease virus/genetics , Protein Binding , Protein Domains , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL